
An EM Algorithm for Learning in Controlled
Linear Dynamical Systems

Ömer Deniz Akyıldız
Department of Electrical Engineering

Bogaziçi University

2013

Abstract

In this report, we derive an expectation-maximization (EM) algo-
rithm for learning in controlled dynamical systems. This report should
be thought of as a simple extension of the algorithm presented in [1].
But in our case, we assume that the physical models of the objects
and observation models are known, however the ‘policies’ of objects
are not known. Starting from this point, we derive an EM algorithm
for learning policies from data.

1 Introduction

In [1], the authors derive an EM algorithm to learn the parameters of a linear
dynamical system. Simply, they consider the following dynamical model,

xt = Axt−1 + wt−1, (1)

yt = Cxt + nt, (2)

where (xt)t≥0 is a hidden stochastic process and (yt)t≥0 is the observation
process and wt and nt are white noise sequences. They derive update rules
(for EM) for A,C,Q,R, where Q and R noise covariances.

In this report, we proceed in a similar fashion (as an exercise). How-
ever, we assume our dynamical system is controlled [2]. A controlled linear
dynamical system (CLDS) can be written as,

xt = Axt−1 +BLxt−1 + wt−1, (3)

yt = Cxt + nt. (4)

1

In general, control inputs are denoted by ut. In our CLDS, we denote them
with Lxt−1. In theory, the matrix L is determined by minimizing a quadratic
cost function1

E

{
xTNQNxN +

N−1∑
k=0

(xTkQkxk + uTkRkuk).

}
(5)

For the derivation of L by minimizing this cost function, see [2].
The idea of learning this cost function from observations is called as

inverse optimal control or inverse reinforcement learning. However, from
an EM viewpoint, deriving the EM algorithm to learn cost this function is
pretty hard due to the recursive structure of the Algebraic Riccati Equation
[2]. Rather, by focusing on only to L matrix, an EM algorithm can be
devised. In this report, we assume A,B,C is known. However, if they are
unknown, one can also derive the EM algorithm following the work [1] and
our derivations. The assumption about A,B,C makes sense: In general,
physical models of objects are approximately known. For example, if one
wants to track a vehicle, one usually knows how its physical location evolves.
However, we would not know if the driver accelerating or decelerating the
vehicle. This is what we call as a policy.

In this work, we try to estimate the policy matrix L. For a detailed
discussion and derivation of policy matrix, see [2]. As we mentioned, we
assume A,B,C is known, and further assume everything else is known in-
cluding initial conditions to simplify derivation – since the update rules for
those quantities are known. Note that, in order to assume that the dynami-
cal system is controlled, we need the pair (A,B) should be controllable and
the pair (A,C) should be observable [2]. We assume these assumptions hold.

2 The EM algorithm

The EM algorithm aims to maximize the log likelihood of complete data
given the observed data. For an excellent treatment of EM algorithm, see
[3]. First of all, we write the likelihood

p(x1:T , y1:T |L) = p(x1)
T∏
t=2

p(xt|xt−1, L)
T∏
t=1

p(yt|xt), (6)

1Note that the matrices Q and R in the cost function are not noise covariances. They
characterise the interaction over state variables.

2

by using the conditional independence assumptions implicit in our model.
This model is an instance of a hidden Markov model and these models fac-
torize over observation and transition distributions [4]. By departing this
point, we write the log-likelihood

log p(x1:T , y1:T |L) = log p(x1) +
T∑
t=2

log p(xt|xt−1, L) +
T∑
t=1

log p(yt|xt). (7)

In a typical expectation maximization setup, we aim to perform two step: (1)
E-step, (2) M-step. In E-step, we aim at computing the following expectation,

〈log p(x1:T , y1:T |L)〉p(x1:T |y1:T ,L?) , (8)

where L? is a fixed parameter. Then, in the maximization step, we aim at
updating this L? by setting derivative of this expectation with respect to L to
zero. We start with the maximization step (M-step) and write expectations
in the equations explicitly. Then, we show the E-step – how to compute these
expectations.

2.1 M-step

The important term for us is p(xt|xt−1, L). Let us write it explicitly:

p(xt|xt−1, L) = N (xt; (A+BL)xt−1, Q). (9)

Suppose A,B,Q is known. More explicitly

p(xt|xt−1) = exp

{
−1

2
(xt − (A+BL)xt−1)

>Q−1 (xt − (A+BL)xt−1)

}
(2π)−k/2|Q|−1/2.

(10)

If we would like to devise a formula to update L, we have to minimize fol-
lowing cost function2 [3]

Q(θ, θold) = −T − 1

2
log |Q| − Ex1:T |θold

[
1

2

T∑
t=2

(xt − (A+BL)xt−1)
>Q−1(xt − (A+BL)xt−1)

]
.

(11)

First, consider the term (xt − (A + BL)xt−1)
>Q−1(xt − (A + BL)xt−1). We

can expand this term as

x>t Q
−1xt − x>t Q−1(A+BL)xt−1 − ((A+BL)xt−1)

>Q−1xt

+((A+BL)xt−1)
>Q−1((A+BL)xt−1).

2(·)> denotes transpose.

3

By playing with this expression, we arrive at

x>t Q
−1xt − x>t Q−1(A+BL)xt−1 − x>t−1(A+BL)>Q−1xt

+x>t−1(A+BL)>Q−1(A+BL)xt−1,

which, by expanding the last term, yields

x>t Q
−1xt − x>t Q−1(A+BL)xt−1 − x>t−1(A+BL)>Q−1xt

+x>t−1A
>Q−1(A+BL)xt−1 + x>t−1(BL)>Q−1(A+BL)xt−1.

We can in turn write this as

x>t Q
−1xt − x>t Q−1(A+BL)xt−1 − x>t−1(A+BL)>Q−1xt + x>t−1A

>Q−1Axt−1

+x>t−1A
>Q−1BLxt−1 + x>t−1(BL)>Q−1Axt−1 + x>t−1(BL)>Q−1BLxt−1.

Hence, by expanding all terms, we can write this expression as

x>t Q
−1xt − x>t Q−1Axt−1 − x>t Q−1BLxt−1 − x>t−1A>Q−1xt − x>t−1(BL)>Q−1xt+

x>t−1A
>Q−1Axt−1 + x>t−1A

>Q−1BLxt−1 + x>t−1(BL)>Q−1Axt−1 + x>t−1(BL)>Q−1BLxt−1.

Finally, we can write it as (by using the properties of trace [5])3,

Ft = Tr

[
Q−1xtx

>
t − A>Q−1xtx>t−1 − (BL)>Q−1xtx

>
t−1 − A>Q−1xtx>t−1 − (BL)>Q−1xtx

>
t−1

+A>Q−1Axt−1x
>
t−1 + A>Q−1BLxt−1x

>
t−1 + (BL)>Q−1Axt−1x

>
t−1 + (BL)>Q−1BLxt−1x

>
t−1

]
.

We call this quantity as Ft to use in below equations. Now, if we compute,

∂Q(θ, θold)

∂L
= −1

2
Ex1:T |θold

[
T∑
t=2

∂(xt − (A+BL)xt−1)
>Q−1(xt − (A+BL)xt−1)

∂L

]
(12)

If we use the properties derived in above equations, we obtain

∂Q(θ, θold)

∂L
= −1

2
Ex1:T |θold

[
T∑
t=2

∂Ft
∂L

]
. (13)

3Since Q−1 = Q−1
>

4

We can expand the derivatives

∂Q(θ, θold)

∂L
= −1

2
Ex1:T |θold

[
T∑
t=2

(
−
∂Tr

[
(BL)>Q−1xtx

>
t−1
]

∂L
−
∂Tr

[
(BL)>Q−1xtx

>
t−1
]

∂L

+
∂Tr

[
A>Q−1BLxt−1x

>
t−1
]

∂L
+
∂Tr

[
(BL)>Q−1Axt−1x

>
t−1
]

∂L
+
∂Tr

[
(BL)>Q−1BLxt−1x

>
t−1
]

∂L

)]
.

(14)

With a bit more painful algebra (put L>B> instead of (BL)>,

∂Q(θ, θold)

∂L
= −1

2
Ex1:T |θold

[
T∑
t=2

(
−
∂Tr

[
L>B>Q−1xtx

>
t−1
]

∂L
−
∂Tr

[
L>B>Q−1xtx

>
t−1
]

∂L

+
∂Tr

[
A>Q−1BLxt−1x

>
t−1
]

∂L
+
∂Tr

[
L>B>Q−1Axt−1x

>
t−1
]

∂L
+
∂Tr

[
L>B>Q−1BLxt−1x

>
t−1
]

∂L

)]
.

(15)

Since we can change the order in the trace operator, we can make this ex-
pression more differentiation-friendly:

∂Q(θ, θold)

∂L
= −1

2
Ex1:T |θold

[
T∑
t=2

(
−
∂Tr

[
B>Q−1xtx

>
t−1L

>]
∂L

−
∂Tr

[
B>Q−1xtx

>
t−1L

>]
∂L

+
∂Tr

[
xt−1x

>
t−1A

>Q−1BL
]

∂L
+
∂Tr

[
B>Q−1Axt−1x

>
t−1L

>]
∂L

+
∂Tr

[
B>Q−1BLxt−1x

>
t−1L

>]
∂L

)]
.

(16)

Now we can take derivatives4,

∂Q(θ, θold)

∂L
= −1

2
Ex1:T |θold

[
T∑
t=2

(
−
[
B>Q−1xtx

>
t−1
]
−
[
B>Q−1xtx

>
t−1
]

+
[
B>Q−1Axt−1x

>
t−1
]

+
[
B>Q−1Axt−1x

>
t−1
]

+
[
B>Q−1BLxt−1x

>
t−1 +B>Q−1BLxt−1x

>
t−1
])]

(17)

Our aim is to leave L alone by setting

∂Q(θ, θold)

∂L
= 0

4From [5], we have ∂Tr[MXNX>]
∂X = M>XN> +MXN . Here we have M = B>Q−1B

and N = xt−1x
T
t−1. Luckily, M = MT and N = NT .

5

For the sake of simplicity, let us write

Et|t−1 = Ex1:T |θold
[
xtx
>
t−1
]

(18)

Et−1|t−1 = Ex1:T |θold
[
xt−1x

>
t−1
]
, (19)

and

Es
t|t−1 =

T∑
t=2

Et|t−1, (20)

Es
t−1|t−1 =

T∑
t=2

Et−1|t−1, (21)

(22)

where s stands for summation from 2 to T . Then, if we set the derivative to
zero, we have,

B>Q−1Es
t|t−1 +B>Q−1Es

t|t−1 −B>Q−1AEs
t−1|t−1 −B>Q−1AEs

t−1|t−1

=
(
B>Q−1BLEs

t−1|t−1 +B>Q−1BLEs
t−1|t−1

)
(23)

Let us put M = B>Q−1B and N = Es
t−1|t−1. Denote Z = B>Q−1Es

t|t−1 −
B>Q−1AEs

t−1|t−1. Hence our problem reduces to finding an expression for L
by using the following equation

Z = MLN. (24)

Then, we compactly obtain

L = M−1ZN−1. (25)

2.2 E-step

For a given estimate of L, one can use the exact same E-step given in [1]. One
has to perform a forward-filtering, backward-smoothing algorithm for linear
dynamical systems, i.e., the Kalman filtering followed by the RTS smoothing
to estimate the expectations given in the M-step. One can consult to [1] to
employ this algorithm, only by modifying the A matrix with A+BL̂ where
L̂ is the current estimate of the matrix L.

References

[1] Zoubin Ghahramani and Geoffrey E. Hinton. Parameter estimation for
linear dynamical systems. Technical report, 1996.

6

[2] D. P. Bertsekas. Dynamic Programming and Optimal Control, Vol. I, 2nd
Ed. Athena Scientific, Belmont, MA, 2001.

[3] Christopher M. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[4] Olivier Cappé, Eric Moulines, and Tobias Ryden. Inference in Hidden
Markov Models. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2005.

[5] K. B. Petersen and M. S. Pedersen. The matrix cookbook, nov 2012.
Version 20121115.

7

	Introduction
	The EM algorithm
	M-step
	E-step

