Simple nudging schemes for particle filtering
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We investigate a new sampling scheme to improve the performance of particle
filters 1in scenarios where either (a) there 1s a significant mismatch between the
assumed model dynamics and the actual system producing the available observa-
tions, or (b) the system of interest 1s high dimensional and the posterior probability
tends to concentrate 1n relatively small regions of the state space.

State-space models and bootstrap particle filters

State-space models (SSMs) consist of a signal process (x;):en and an observation
process (y:)+eny With the following conditional independence structure,

o 7T0(CIZ’Q)
$t‘33t—1 ~ 7'(%5\51715—1)

yt\xt ~ g(ytm)

where 7y 1s the prior distribution, 7 1s a Markov transition kernel on X, and
g(y:|x¢) denotes the likelihood (we adopt the notation g;(x;) := g(y:|x¢)). We are
interested 1n estimating the expectations with respect to conditional distributions
(7(z¢|y1:t) )ten := (me(x4) )ren sequentially, known as the filtering problem.

Suppose we have a set of samples {:qu’_)l}f\il from 7 (xs_1|y1.4-1).

Algorithm 1 (BPF)

For a time step ¢,

— Sample:
— (1)

Ly NT(th‘mgz—)l)
foralle =1,..., V.

— Weight: |
w = g/2,")/ Z
foralli=1,..., N where Z, = z gz,
—Resample:

N

The samples {CL’t 1 are used to construct an approximation of m ~
~ =506 %0 (dz) and used to estimate the integral,

/f )mi(dz) & /f z)m,) (dz) Zf N (f)

BPF performs poorly in high dimensions and under model misspecification.

Nudged particle filter

We propose a modification of BPF, aiming at significantly improving its perfor-
mance [1]. We use an operation called nudging within the particle filter, similar
to what has been done 1n [2]. We define the nudging operator « as,

v = ay(x) suchthat g,(z') > gi(=) (1)
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Algorithm 2 (NuPF)

For the time step ¢,
—Sample:

foralle =1,..., V.
—Nudge:

for selected indices ¢ € 7 to be nudged.

— Weight: |
w! = g(%")/ 2
foralli =1,...,N where Z, = >_. gt(:z;]@).

—Resample:

N

N wgz)%gz)(daz)

i=1

More compactly,
T ffv\izgfv\i/ T T

sampling nudging weighting resampling

Nudging schemes

How to choose particles to be nudged: Batch and independent nudging

Batch nudging:

e Choose Z = {iq,...
without replacement.

° :}Egi’“) = oz(a‘:§ik>) for i, € 7.

Independent nudging:
du} o~ [N e&” =a(z”) w.p. M/N.
(For parallel implementations of par-
ticle filters)

How to nudge: Gradient nudging

) = 0 V(e

There are gradient-free possibilities we do not consider here, see [1].

Analysis

We show that NuPF has the usual Monte Carlo convergence rate, see [1] for more
specific results for e.g. gradient steps.

Theorem 1. Let y,.1 be arbitrary but fixed and choose any 0 <t <T'. Let f be a
bounded test function. Then, under regularity assumptions [1],

ct| f oo
Vv N

|7 (f) = m(F)llp <

where c¢; < o0 is a constant independent of N.

Numerical Experiments

We show results on Lorenz 63 and Lorenz 96 models. For more experiments on
object tracking see [1].

Lorenz 63 model

Cﬂ?l — —S(.CCl — ZEQ) -+ dwl,
C.$2 = rxry — 9 — T1T3 T+ de,

C.$3 — L1X9 — ng -+ dujg,

Observations are collected every ¢t time steps, with only first dimension 1s ob-
served. Hence the system 1s partially observed both time and space,

Yn = koxl,tsn + Up,
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Figure 1. Results with Lorenz 63 misspecified parameter b.
Lorenz 96 model

dr; = (Tit1 — Ti—2)xio1 — z; + F + dw;
Half of the state variables are observed at every ¢, time steps,

Yk = L(2k—1),tsn T Un
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Figure 2. Results with Lorenz 96 model with d = 40.
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Figure 3. Lorenz 96 model with increasing dimensions with N = 500.
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