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We investigate a new sampling scheme to improve the performance of particle
filters in scenarios where either (a) there is a significant mismatch between the
assumed model dynamics and the actual system producing the available observa-
tions, or (b) the system of interest is high dimensional and the posterior probability
tends to concentrate in relatively small regions of the state space.

State-space models and bootstrap particle filters

State-space models (SSMs) consist of a signal process (xt)t∈N and an observation
process (yt)t∈N with the following conditional independence structure,

x0 ∼ π0(x0)

xt|xt−1 ∼ τ(xt|xt−1)

yt|xt ∼ g(yt|xt)

where π0 is the prior distribution, τ is a Markov transition kernel on X, and
g(yt|xt) denotes the likelihood (we adopt the notation gt(xt) := g(yt|xt)). We are
interested in estimating the expectations with respect to conditional distributions
(π(xt|y1:t))t∈N := (πt(xt))t∈N sequentially, known as the filtering problem.

Suppose we have a set of samples {x(i)
t−1}Ni=1 from π(xt−1|y1:t−1).

Algorithm 1 (BPF)

For a time step t,
– Sample:

x̄
(i)
t ∼ τ(xt|x(i)

t−1)

for all i = 1, . . . , N .
– Weight:

w
(i)
t = gt(x̄

(i)
t )/Z̄t

for all i = 1, . . . , N where Z̄t =
∑

i gt(x̄
(i)
t ).

– Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̄
(i)
t
(dx)

The samples {x(i)
t }Ni=1 are used to construct an approximation of πt ≈ πN

t =
1
N

∑
i δx(i)t

(dx) and used to estimate the integral,

πt(f) =

∫
f(x)πt(dx) ≈

∫
f(x)πN

t (dx) =
1

N

∑
i

f(x
(i)
t ) = πN

t (f)

BPF performs poorly in high dimensions and under model misspecification.

Nudged particle filter

We propose a modification of BPF, aiming at significantly improving its perfor-
mance [1]. We use an operation called nudging within the particle filter, similar
to what has been done in [2]. We define the nudging operator α as,

x′ = αt(x) such that gt(x
′) ≥ gt(x) (1)

Algorithm 2 (NuPF)

For the time step t,

– Sample:
x̄
(i)
t ∼ τ(xt|x(i)

t−1)

for all i = 1, . . . , N .
– Nudge:

x̃
(i)
t = αt(x̄

(i)
t )

for selected indices i ∈ I to be nudged.
– Weight:

w
(i)
t = gt(x̃

(i)
t )/Z̃t

for all i = 1, . . . , N where Z̃t =
∑

i gt(x̃
(i)
t ).

– Resample:

x
(i)
t ∼

N∑
i=1

w
(i)
t δ

x̃
(i)
t
(dx)

More compactly,

πN
t−1 →︸︷︷︸

sampling
ξNt →︸︷︷︸

nudging
ξ̃Nt →︸︷︷︸

weighting
π̃N
t →︸︷︷︸

resampling
πN
t

Nudging schemes

How to choose particles to be nudged: Batch and independent nudging

Batch nudging:

•Choose I = {i1, . . . , iM} ∼ [N ]

without replacement.

• x̃(ik)
t = α(x̄

(ik)
t ) for ik ∈ I.

Independent nudging:

• x̃(i)
t = α(x̄

(i)
t ) w. p. M/N .

(For parallel implementations of par-
ticle filters)

How to nudge: Gradient nudging

x̃
(i)
t = x̄

(i)
t + γ∇xtgt(x̄

(i)
t ).

There are gradient-free possibilities we do not consider here, see [1].

Analysis

We show that NuPF has the usual Monte Carlo convergence rate, see [1] for more
specific results for e.g. gradient steps.
Theorem 1. Let y1:T be arbitrary but fixed and choose any 0 < t ≤ T . Let f be a
bounded test function. Then, under regularity assumptions [1],

∥πN
t (f)− πt(f)∥p ≤

ct∥f∥∞√
N

where ct < ∞ is a constant independent of N .

Numerical Experiments

We show results on Lorenz 63 and Lorenz 96 models. For more experiments on
object tracking see [1].

Lorenz 63 model

dx1 = −s(x1 − x2) + dw1,

dx2 = rx1 − x2 − x1x3 + dw2,

dx3 = x1x2 − bx3 + dw3,

Observations are collected every ts time steps, with only first dimension is ob-
served. Hence the system is partially observed both time and space,

yn = kox1,tsn + vn
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Figure 1. Results with Lorenz 63 misspecified parameter b.

Lorenz 96 model

dxi = (xi+1 − xi−2)xi−1 − xi + F + dwi

Half of the state variables are observed at every ts time steps,

yk,n = x(2k−1),tsn + vn
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Figure 2. Results with Lorenz 96 model with d = 40.
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Figure 3. Lorenz 96 model with increasing dimensions with N = 500.
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Acknowledgements. Ö. D. A. and J. M. acknowledge the support of the Office of Naval Research Global (award no. N62909- 15-1-2011)
and Ministerio de Economı́a y Competitividad of Spain (project TEC2015-69868-C2-1-R ADVENTURE).


	State-space models and bootstrap particle filters
	Algorithm 1 (BPF)

	Nudged particle filter
	Algorithm 2 (NuPF)
	Nudging schemes
	How to choose particles to be nudged: Batch and independent nudging
	How to nudge: Gradient nudging

	Analysis

	Numerical Experiments
	Lorenz 63 model
	Lorenz 96 model


	References

